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Abstract

We consider the problem of explaining the temporal behavior
of black-box systems using human-interpretable models. Fol-
lowing recent research trends, we rely on the fundamental yet
interpretable models of deterministic finite automata (DFAs)
and linear temporal logic (LTLf) formulas. In contrast to most
existing works for learning DFAs and LTLf formulas, we con-
sider learning from only positive examples. Our motivation
is that negative examples are generally difficult to observe,
in particular, from black-box systems. To learn meaningful
models from positive examples only, we design algorithms
that rely on conciseness and language minimality of models
as regularizers. Our learning algorithms are based on two ap-
proaches: a symbolic and a counterexample-guided one. The
symbolic approach exploits an efficient encoding of language
minimality as a constraint satisfaction problem, whereas the
counterexample-guided one relies on generating suitable neg-
ative examples to guide the learning. Both approaches pro-
vide us with effective algorithms with minimality guarantees
on the learned models. To assess the effectiveness of our al-
gorithms, we evaluate them on a few practical case studies.

1 Introduction
The recent surge of complex black-box systems in Artificial
Intelligence has increased the demand for designing simple
explanations of systems for human understanding. More-
over, in several areas such as robotics, healthcare, and trans-
portation (Bundy et al. 2019; Gunning et al. 2019; Molnar
2022), inferring human-interpretable models has become the
primary focus to promote human trust in systems.

To enhance the interpretability of systems, we aim to ex-
plain their temporal behavior. For this purpose, models that
are typically employed include, among others, finite state
machines and temporal logics (Weiss, Goldberg, and Ya-
hav 2018; Roy, Fisman, and Neider 2020). Our focus is
on two fundamental models: deterministic finite automata
(DFAs) (Rabin and Scott 1959); and formulas in the de facto
standard temporal logic: linear temporal logic (LTL) (Pnueli
1977). These models not only possess a host of desirable
theoretical properties, but also feature easy-to-grasp syntax
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and intuitive semantics. The latter properties make them par-
ticularly suitable as interpretable models with many appli-
cations, e.g., as task knowledge for robotic agents (Kasen-
berg and Scheutz 2017; Memarian et al. 2020), as a formal
specification for verification (Lemieux, Park, and Beschast-
nikh 2015), as behavior classifier for unseen data (Shvo et al.
2021), and several others (Camacho and McIlraith 2019).

The area of learning DFAs and LTL formulas is well-
studied with a plethora of existing works (see related work).
Most of them tackle the typical binary classification prob-
lem (Gold 1978) of learning concise DFAs or LTL formulas
from a finite set of examples partitioned into a positive and
a negative set. However, negative examples are hard to ob-
tain in my scenarios. In safety-critical areas, often observing
negative examples from systems (e.g., from medical devices
and self-driving cars) can be unrealistic (e.g., by injuring pa-
tients or hitting pedestrians). Further, often one only has ac-
cess to a black-box implementation of the system and thus,
can extract only its possible (i.e., positive) executions.

In spite of being relevant, the problem of learning concise
DFAs and LTL formulas from positive examples, i.e., the
corresponding one class classification (OCC) problem, has
garnered little attention. The primary reason, we believe, is
that, like most OCC problems, this problem is an ill-posed
one. Specifically, a concise model that classifies all the posi-
tive examples correctly is the trivial model that classifies all
examples as positive. This corresponds to a single state DFA
or, in LTL, the formula true . These models, unfortunately,
convey no insights about the underlying system.

To ensure a well-defined problem, Avellaneda and Pe-
trenko (2018), who study the OCC problem for DFAs, pro-
pose the use of the (accepted) language of a model (i.e., the
set of allowed executions) as a regularizer. Searching for a
model that has minimal language, however, results in one
that classifies only the given examples as positive. To avoid
this overfitting, they additionally impose an upper bound on
the size of the model. Thus, the OCC problem that they state
is the following: given a set of positive examples P and a
size bound n, learn a DFA that (a) classifies P correctly,
(b) has size at most n, and (c) is language minimal. For lan-
guage comparison, the order chosen is set inclusion.

To solve this OCC problem, Avellaneda and Petrenko
(2018) then propose a counterexample-guided algorithm.
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This algorithm relies on generating suitable negative exam-
ples (i.e., counterexamples) iteratively to guide the learning
process. Since only the negative examples dictate the al-
gorithm, in many iterations of their algorithm, the learned
DFAs do not have a language smaller (in terms of inclusion)
than the previous hypothesis DFAs. This results in searching
through several unnecessary DFAs.

To alleviate this drawback, our first contribution is a sym-
bolic algorithm for solving the OCC problem for DFA. Our
algorithm converts the search for a language minimal DFA
symbolically to a series of satisfiability problems in Boolean
propositional logic, eliminating the need for counterexam-
ples. The key novelty is an efficient encoding of the language
inclusion check of DFAs in a propositional formula, which is
polynomial in the size of the DFAs. We then exploit an off-
the-shelf SAT solver to check satisfiability of the generated
propositional formulas and, thereafter, construct a suitable
DFA. We expand on this algorithm in Section 3.

We then present two novel algorithms for solving the
OCC problem for formulas in LTLf (LTL over finite traces).
While our algorithms extend smoothly to traditional LTL
(over infinite traces), our focus here is on LTLf due to its nu-
merous applications in AI (Giacomo and Vardi 2013). Also,
LTLf being a strict subclass of DFAs, the learning algorithms
for DFAs cannot be applied directly to learn LTLf formulas.

Our first algorithm for LTLf is a semi-symbolic algo-
rithm, which combines ideas from both the symbolic and
the counterexample-guided approaches. Roughly, this algo-
rithm exploits negative examples to overcome the theoreti-
cal difficulties of symbolically encoding language inclusion
for LTLf. (LTLf inclusion check is known to be inherently
harder than that for DFAs (Sistla and Clarke 1985)). Our sec-
ond algorithm is simply a counterexample-guided algorithm
that relies solely on the generation of negative examples for
learning. Section 4 details both algorithms.

To further study the presented algorithms, we empirically
evaluate them in several case studies. We demonstrate that
our symbolic algorithm solves the OCC problem for DFA
in fewer (approximately one-tenth) iterations and runtime
comparable to the counterexample-guided algorithm, skip-
ping thousands of counterexample generations. Further, we
demonstrate that our semi-symbolic algorithm solves the
OCC problem for LTLf (in average) thrice as fast as the
counterexample-guided algorithm. All our experimental re-
sults can be found in Section 5. For the supplementary ma-
terial of this paper, refer to the full version (Roy et al. 2022).

Related Work. The OCC problem described in this pa-
per belongs to the body of works categorized as passive
learning (Gold 1978). As alluded to in the introduction, in
this topic, the most popular problem is the binary classifica-
tion problem for learning DFAs and LTL formulas. Notable
works include the works by Biermann and Feldman (1972);
Grinchtein, Leucker, and Piterman (2006); Heule and Ver-
wer (2010) for DFAs and Neider and Gavran (2018); Cama-
cho and McIlraith (2019); Raha et al. (2022) for LTL/LTLf.

The OCC problem of learning formal models from posi-
tive examples was first studied by Gold (1967). This work
showed that the exact identification (in the limit) of certain

models (that include DFAs and LTLf formulas) from posi-
tive examples is not possible. Thereby, works have mostly
focussed on models that are learnable easily from posi-
tive examples, such as pattern languages (Angluin 1980),
stochastic finite state machines (Carrasco and Oncina 1999),
and hidden Markov Models (Stolcke and Omohundro 1992).
None of these works considered learning DFAs or LTL for-
mulas, mainly due to the lack of a meaningful regularizer.

Recently, Avellaneda and Petrenko (2018) proposed the
use of language minimality as a regularizer and, thereafter,
developed an effective algorithm for learning DFAs. While
their algorithm cannot overcome the theoretical difficulties
shown by Gold (1967), they still produce a DFA that is a
concise description of the positive examples. We signifi-
cantly improve upon their algorithm by relying on a novel
encoding of language minimality using propositional logic.

For temporal logics, there are a few works that con-
sider the OCC problem. Notably, Ehlers, Gavran, and Neider
(2020) proposed a learning algorithm for a fragment of LTL
which permits a representation known as universally very-
weak automata (UVWs). However, since their algorithm re-
lies on UVWs, which has strictly less expressive power than
LTL, it cannot be extended to full LTL. Further, there are
works on learning LTL (Chou, Ozay, and Berenson 2022)
and STL (Jha et al. 2019) formulas from trajectories of high-
dimensional systems. These works based their learning on
the assumption that the underlying system optimizes some
cost functions. Our method, in contrast, is based on the nat-
ural notion of language minimality to find tight descriptions,
without any assumptions on the system.

A problem similar to our OCC problem is studied in the
context of inverse reinforcement learning (IRL) to learn tem-
poral rewards for RL agents from (positive) demonstrations.
For instance, Kasenberg and Scheutz (2017) learn concise
LTL formulas that can distinguish between the provided
demonstrations from random executions of the system. To
generate the random executions, they relied on a Markov
Decision Process (MDP) implementation of the underlying
system. Our regularizers, in contrast, assume the underlying
system to be a black-box and need no access to its inter-
nal mechanisms. Vazquez-Chanlatte et al. (2018) also learn
LTL-like formulas from demonstrations. Their search re-
quired a pre-computation of the lattice of formulas induced
by the subset order, which can be a bottleneck for scaling
to full LTL. Recently, Hasanbeig et al. (2021) devised an
algorithm to infer automaton for describing high-level ob-
jectives of RL agents. Unlike ours, their algorithm relied on
user-defined hyper-parameters to regulate the degree of gen-
eralization of the inferred automaton.

2 Preliminaries
In this section, we set up the notation for the rest of the paper.

Let N = {1, 2, . . .} be the set of natural numbers and
[n] = {1, 2, . . . , n} be the set of natural numbers up to n.

Words and Languages. To formally represent system ex-
ecutions, we rely on the notion of words defined over a finite
and nonempty alphabet Σ. The elements of Σ, which denote
relevant system states, are referred to as symbols.
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A word over Σ is a finite sequence w = a1 . . . an where
ai ∈ Σ, i ∈ [n]. The empty word ε is the empty sequence.
The length |w| of w is the number of its symbols (note that
|ε| = 0). Moreover, Σ∗ denotes the set of all words over Σ.
We use w[i] = ai to denote the i-th symbol of w and w[i:] =
ai · · · an to denote the suffix of w starting from position i.

A language L is any set of words from Σ∗. We allow the
standard set operations on languages such as inclusion L1 ⊆
L2, strict inclusion L1 ⊂ L2, and difference L1 \L2. More-
over, we define Pref (L) := {u ∈ Σ∗ | ∃v ∈ Σ∗, uv ∈ L}.
Propositional logic. All our algorithms rely on proposi-
tional logic and, thus, we introduce it briefly. Let Var be
a set of propositional variables, which take Boolean val-
ues {0, 1} (0 represents false , 1 represents true). Formulas
in propositional logic—which we denote by Greek capital
letters—are defined recursively as: Φ := x ∈ Var | ¬Φ |
Φ ∨ Φ. As syntax sugar, we allow the following standard
formulas: true , false , Φ ∧Ψ, Φ→ Ψ and Φ↔ Ψ.

An assignment v : Var 7→ {0, 1}maps propositional vari-
ables to Boolean values. Based on an assignment v, we
define the semantics of propositional logic using a valua-
tion function V (v,Φ), which is inductively defined as fol-
lows: V (v, x) = v(x), V (v,¬Ψ) = 1 − V (v,Ψ), and
V (v,Ψ∨Φ) = max{V (v,Ψ), V (v,Φ)}. We say that v sat-
isfies Φ if V (v,Φ) = 1, and we call v a model of Φ. A
formula Φ is satisfiable if there exists a model v of Φ.

Arguably, the most well-known problem in propositional
logic—the satisfiability (SAT) problem—is the problem of
determining whether a propositional formula is satisfiable
or not. With the rapid development of SAT solvers (Li and
Manyà 2021) (which we exploit in our algorithms), checking
the satisfiability of formulas with even millions of variables
has become feasible. Most solvers can also return a model
when a formula is satisfiable.

3 Learning DFA from Positive Examples
In this section, we present our symbolic algorithm for learn-
ing DFAs from positive examples. We begin by formally in-
troducing DFAs.

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, qI , F ) where Q is a finite set of states, Σ is the
alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ : Q × Σ → Q is the transition function.
We define the size |A| of a DFA as its number of states |Q|.

Given a word w = a1 . . . an ∈ Σ∗, the run of A on w,
denoted byA : q1

w−→ qn+1, is a sequence of states and sym-
bols q1a1q2a2 · · · anqn+1, such that q1 = qI and for each
i ∈ [n], qi+1 = δ(qi, ai). Moreover, we sayw is accepted by
A if the last state in the run qn+1 ∈ F . Finally, we define the
language of A as L(A) = {w ∈ Σ∗ | w is accepted by A}.

To introduce the OCC problem for DFAs, we first describe
the learning setting. The OCC problem relies on a set of
positive examples, which we represent using a finite set of
words P ⊂ Σ∗. Additionally, the problem requires a bound
n to restrict the size of the learned DFA. The role of this size
bound is two-fold: (1) it ensures that the learned DFA does
not overfitP ; and (2) using a suitable bound, one can enforce
the learned DFAs to be concise and, thus, interpretable.

Algorithm 1: Symbolic Algorithm for Learning DFA
Input: Positive words P , bound n

1: A ← AΣ∗ , ΦA := ΦDFA ∧ ΦP
2: while ΦA is satisfiable (with model v) do
3: A ← DFA constructed from v
4: ΦA := ΦDFA ∧ ΦP ∧ Φ⊆A ∧ Φ 6⊇A
5: end while
6: return A

Finally, we define a DFAA to be an n-description of P if
P ⊆ L(A) and |A| ≤ n. When P is clear from the context,
we simply say A is an n-description.

We can now state the OCC problem for DFAs:
Problem 1 (OCC problem for DFAs) Given a set of posi-
tive words P and a size bound n, learn a DFA A such that:
(1) A is an n-description; and (2) for every DFA A′ that is
an n-description, L(A′) 6⊂ L(A).
Intuitively, the above problem asks to search for a DFA that
is an n-description and has a minimal language. Note that
several such DFAs can exist since the language inclusion is
a partial order on the languages of DFA. We, here, are inter-
ested in learning only one such DFA, leaving the problem of
learning all such DFAs as interesting future work.

3.1 The Symbolic Algorithm
We now present our algorithm for solving Problem 1. Its
underlying idea is to reduce the search for an appropriate
DFA to a series of satisfiability checks of propositional for-
mulas. Each satisfiable propositional formula enables us to
construct a guess, or a so-called hypothesis DFA A. In each
step, using the hypothesis A, we construct a propositional
formula ΦA to search for the next hypothesis A′ with a lan-
guage smaller (in the inclusion order) than the current one.
The properties of the propositional formula ΦA we construct
are: (1) ΦA is satisfiable if and only if there exists a DFAA′
that is an n-description and L(A′) ⊂ L(A); and (2) based
on a model v of ΦA, one can construct a such a DFA A′.

Based on the main ingredient ΦA, we design our learning
algorithm as sketched in Algorithm 1. Our algorithm initial-
izes the hypothesis DFAA to beAΣ∗ , which is the one-state
DFA that accepts all words in Σ∗. Observe that AΣ∗ is triv-
ially an n-description, since P ⊂ Σ∗ and |AΣ∗ | = 1. The
algorithm then iteratively exploits ΦA to construct the next
hypothesis DFAs, until ΦA becomes unsatisfiable. Once this
happens, we terminate and return the current hypothesis A
as the solution. The correctness of this algorithm follows
from the following theorem:
Theorem 1 Given positive words P and a size bound n, Al-
gorithm 1 learns a DFA A that is an n-description and for
every DFA A′ that is an n-description, L(A′) 6⊂ L(A).

We now expand on the construction of ΦA. To achieve the
aforementioned properties, we define ΦA as follows:

ΦA := ΦDFA ∧ ΦP ∧ Φ⊆A ∧ Φ 6⊇A (1)
The first conjunct ΦDFA ensures that the propositional vari-
ables we will use encode a valid DFA A′. The second con-
junct ΦP ensures that A′ accepts all positive words. The
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third conjunct Φ⊆A ensures that L(A′) is a subset of L(A).
The final conjunct Φ 6⊇A ensures that L(A′) is not a super-
set of L(A). Together, conjuncts Φ⊆A and Φ 6⊇A ensure that
L(A′) is a proper subset of L(A). In what follows, we detail
the construction of each conjunct.

To encode the hypothesis DFA A′ = (Q′,Σ, δ′, q′I , F
′)

symbolically, following Heule and Verwer (2010), we rely
on the propositional variables: (1) dp,a,q where p, q ∈ [n]
and a ∈ Σ; and (2) fq where q ∈ [n]. The variables dp,a,q
and fq encode the transition function δ′ and the final states
F ′, respectively, ofA′. Mathematically speaking, if dp,a,q is
set to true, then δ′(p, a) = q and if fq is set to true, then
q ∈ F ′. Note that we identify the states Q′ using the set [n]
and the initial state q′I using the numeral 1.

Now, to ensure A′ has a deterministic transition function
δ′, ΦDFA asserts the following constraint:∧
p∈[n]

∧
a∈Σ

[ ∨
q∈[n]

dp,a,q ∧
∧

q 6=q′∈[n]

[
¬dp,a,q ∨ ¬dp,a,q′

]]
.

Based on a model v of the variables dp,a,q and fq , we can
simply construct A′. We set δ′(p, a) to be the unique state q
for which v(dp,a,q) = 1 and q ∈ F ′ if v(fq) = 1.

Next, to construct conjunct ΦP , we introduce variables
xu,q where u ∈ Pref (P ) and q ∈ [n], which track the run
of A′ on all words in Pref (P ), which is the set of prefixes
of all words in P . Precisely, if xu,q is set to true, then there
is a run of A′ on u ending in the state q, i.e., A′ : q′I

u−→ q.
Using the introduced variables, ΦP ensures that the words

in P are accepted by imposing the following constraints:

xε,1 ∧
∧

q∈{2,...,n}

¬xε,q
∧

u∈Pref (P )

∧
p,q∈[n]

∧
a∈Σ

[xu,p ∧ dp,a,q]→xua,q

∧
w∈P

∧
q∈[n]

xw,q→ fq

The first constraint above ensures that the runs start in the
initial state q′I (which we denote using 1) while the second
constraint ensures that they adhere to the transition function.
The third constraint ensures that the run of A′ on every w ∈
P ends in a final state and is, hence, accepted.

For the third conjunct Φ⊆A, we must track the synchro-
nized runs of the current hypothesis A and the next hy-
pothesis A′ to compare their behavior on all words in Σ∗.
To this end, we introduce auxiliary variables, yAq,q′ where
q, q′ ∈ [n]. Precisely, yAq,q′ is set to true, if there exists a
word w ∈ Σ∗ such that there are runs A : qI

w−→ q and
A′ : q′I

w−→ q′.
To ensure L(A′) ⊆ L(A), Φ⊆A imposes the following

constraints:
yA1,1∧

q=δ(p,a)

∧
p′,q′∈[n]

∧
a∈Σ

[[
yAp,p′ ∧ dp′,a,q′

]
→ yAq,q′

]
∧
p 6∈F

∧
p′∈[n]

[
yAp,p′ → ¬fp′

]

The first constraint ensures that the synchronized runs of A
and A′ start in the respective initial states, while the sec-
ond constraint ensures that they adhere to their respective
transition functions. The third constraint ensures that if the
synchronized run ends in a non-final state in A, it must also
end in a non-final state inA′, hence forcing L(A′) ⊆ L(A).

For constructing the final conjunct Φ 6⊃A, the variables we
exploit rely the following result:
Lemma 1 LetA,A′ be DFAs such that |A| = |A′| = n and
L(A′) ⊂ L(A), and let K = n2. Then there exists a word
w ∈ Σ∗ such that |w| ≤ K and w ∈ L(A) \ L(A′).
This result provides an upper bound to the length of a word
that can distinguish between DFAs A and A′

Based on this result, we introduce variables zi,q,q′ where
i ∈ [n2] and q, q′ ∈ [n] to track the synchronized run of A
and A′ on a word of length at most K = n2. Precisely, if
zi,q,q′ is set to true, then there exists a word w of length i,
with the runs A : qI

w−→ q and A′ : q′I
w−→ q′.

Now, Φ 6⊇A imposes the following constraints:

z0,1,1∧
i∈[n2]

[ ∨
q,q′∈[n]

zi,q,q′ ∧
[ ∧
p 6=q∈[n]
p′ 6=q′∈[n]

¬zi,p,p′ ∨ ¬zi,q,q′
]]

∧
p,q∈[n]
p′,q′∈[n]

[[
zi,p,p′ ∧ zi+1,q,q′

]
→

∨
a∈Σ where
q=δ(p,a)

dp′,a,q′
]

∨
i∈[n2]

∨
q∈F
q′∈[n]

[
zi,q,q′ ∧ ¬fq′

]

The first three constraints above ensure that words up to
length n2 have a valid synchronized run on the two DFAs
A and A′. The final constraint ensures that there is a word
of length≤ n2 on which the synchronized run ends in a final
state in A but not in A′, ensuring L(A) 6⊆ L(A′).

4 Learning LTLf from Positive Examples
We now switch our focus to algorithms for learning LTLf
formulas from positive examples. We begin with a formal
introduction to LTLf.

Linear temporal logic (over finite traces) (LTLf) is a logic
that reasons about temporal behavior of systems using tem-
poral modalities. While originally LTLf is built over propo-
sitional variables P , to unify the notation with DFAs, we
define LTLf over an alphabet Σ. It is, however, not a restric-
tion since an LTLf formula over P can always be translated
to an LTLf formula over Σ = 2P . Formally, we define LTLf
formulas—denoted by Greek small letters—inductively as:

ϕ := a ∈ Σ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

As syntactic sugar, along with additional constants and oper-
ators used in propositional logic, we allow the standard tem-
poral operators F (“finally”) and G (“globally”). We define
Λ = {¬,∨,∧,→,X,U,F,G} ∪ Σ to be the set of all oper-
ators (which, for simplicity, also includes symbols). We de-
fine the size |ϕ| of ϕ as the number of its unique subformu-

6510



las; e.g., size of ϕ = (aUX b)∨X b is five, since its five dis-
tinct subformulas are a, b,X b, aUX b, and (aUX b)∨X b.

To interpret LTLf formulas over (finite) words, we fol-
low the semantics proposed by Giacomo and Vardi (2013).
Given a word w, we define recursively when a LTLf formula
holds at position i, i.e., w, i |= ϕ, as follows:

w, i |= a ∈ Σ if and only if a = w[i]

w, i |= ¬ϕ if and only if w, i 6|= ϕ

w, i |= Xϕ if and only if i < |w| and w, i+ 1 |= ϕ

w, i |= ϕUψ if and only if w, j |= ψ for some

i ≤ j ≤ |w| and w, i′ |= ϕ for all i ≤ i′ < j

We sayw satisfies ϕ or, alternatively, ϕ holds onw ifw, 0 |=
ϕ, which, in short, is written as w |= ϕ.

The OCC problem for LTLf formulas, similar to Prob-
lem 1, relies upon a set of positive words P ⊂ Σ∗ and
a size upper bound n. Moreover, an LTLf formula ϕ is an
n-description of P if, for all w ∈ P , w |= ϕ, and |ϕ| ≤ n.
Again, we omit P from n-description when clear. Also, in
this section, an n-description refers only to an LTL formula.

We state the OCC problem for LTLf formulas as follows:
Problem 2 (OCC problem for LTLf formulas) Given a
set of positive words P and a size bound n, learn an LTLf
formula ϕ such that: (1) ϕ is an n-description; and (2) for
every LTLf formula ϕ′ that is an n-description, ϕ′ 6→ ϕ or
ϕ→ ϕ′.
Intuitively, the above problem searches for an LTLf formula
ϕ that is an n-description and holds on a minimal set of
words. Once again, like Problem 1, there can be several such
LTLf formulas, but we are interested in learning exactly one.

4.1 The Semi-Symbolic Algorithm
Our semi-symbolic, does not only depend on the current hy-
pothesis, an LTLf formula ϕ here, as was the case in Al-
gorithm 1. In addition, it relies on a set of negative exam-
ples N , accumulated during the algorithm. Thus, using both
the current hypothesis ϕ and the negative examples N , we
construct a propositional formula Ψϕ,N to search for the
next hypothesis ϕ′. Concretely, Ψϕ,N has the properties that:
(1) Ψϕ,N is satisfiable if and only if there exists an LTLf
formula ϕ′ that is an n-description, does not hold on any
w ∈ N , and ϕ 6→ ϕ′; and (2) based on a model v of Ψϕ,N ,
one can construct such an LTLf formula ϕ′.

The semi-symbolic algorithm follows a paradigm similar
to the one illustrated in Algorithm 1. However, unlike the
previous algorithm, the current guess ϕ′, obtained from a
model of Ψϕ,N , may not always satisfy the relation ϕ′ → ϕ.
In such a case, we generate a word (i.e., a negative example)
that satisfies ϕ, but not ϕ′ to eliminate ϕ′ from the search
space. For the generation of words, we rely on constructing
DFAs from the LTLf formulas (Zhu et al. 2017) and then
performing a breadth-first search over them. If, otherwise,
ϕ′ → ϕ, we then update our current hypothesis and continue
until Ψϕ,N is unsatisfiable. Overall, this algorithm learns an
appropriate LTLf formula with the following guarantee:
Theorem 2 Given positive words P and size bound n, the
semi-symbolic algorithm learns an LTLf formula ϕ that is

∨

U

a X

b

(a) Syntax DAG

5

4

3

2

1

(b) Identifiers

Figure 1: Syntax DAG and identifiers for (aUX b) ∨X b

an n-description and for every LTLf formulas ϕ′ that is an
n-description, ϕ′ 6→ ϕ or ϕ→ ϕ′.

We now focus on the construction of Ψϕ,N , which is sig-
nificantly different from that of ΦA. It is defined as follows:

Ψϕ,N := ΨLTL ∧ΨP ∧ΨN ∧Ψ 6←ϕ. (2)

The first conjunct ΨLTL ensures that propositional variables
we exploit encode a valid LTLf formula ϕ′. The second con-
junct ΨP ensures that ϕ′ holds on all positive words, while
the third, ΨN , ensures that it does not hold on the negative
words. The final conjunct Φ 6←ϕ ensures that ϕ 6→ ϕ′.

Following Neider and Gavran (2018), all of our conjuncts
rely on a canonical syntactic representation of LTLf formu-
las as syntax DAGs. A syntax DAG is a directed acyclic
graph (DAG) that is obtained from the syntax tree of an
LTLf formula by merging its common subformulas. An ex-
ample of a syntax DAG is illustrated in Figure 1a. Further,
to uniquely identify each node of a syntax DAG, we assign
them unique identifiers from [n] such that every parent node
has an identifier larger than its children (see Figure 1b).

To construct the hypothesis ϕ′, we encode its syntax
DAG, using the following propositional variables: (1) xi,λ
for i ∈ [n] and λ ∈ Λ; and (2) li,j and ri,j for i ∈ [n] and
j ∈ [i−1]. The variable xi,λ tracks the operator label of the
Node i of the syntax DAG of ϕ′, while variables li,j and ri,j
encode the left and right child of Node i, respectively. Math-
ematically, xi,λ is set to true if and only if Node i is labeled
with operator λ. Moreover, li,j (resp. ri,j) is set to true if and
only if Node i’s left (resp. right) child is Node j.

To ensure variables xi,λ, li,j and ri,j have the desired
meaning, ΨLTL imposes certain structural constraints. For in-
stance, to ensure that each node of the syntax DAG of ϕ′ is
uniquely labeled by an operator, we have the following con-
straints: ∧

i∈[n]

[ ∨
λ∈Λ

xi,λ ∧
∧

λ 6=λ′∈Λ

[
¬xi,λ ∨ ¬xi,λ′

]]
.

ΨLTL includes additional structural constraints for which we
refer the readers to Neider and Gavran (2018).

We now describe the construction of ΨP and ΨN . Both
use variables yiw,t where i ∈ [n], w ∈ P ∪N , and t ∈ [|w|].
The variable yiw,t tracks whether ϕ′i holds on the suffixw[t:],
where ϕ′i is the subformula of ϕ′ rooted at Node i. Formally,
yiw,t is set to true if and only if w[t:] |= ϕ′i.

To ensure desired meaning of variables yiw,t, ΨP and ΨN

impose semantic constraints, again similar to ones proposed
by Neider and Gavran (2018). Exemplarily, the constraint

6511



implementing the semantics of the X-operator is as follows:∧
i∈[n]
j∈[i−1]

xi,X ∧ li,j →
[[ ∧
t∈[|w|−1]

yiw,t ↔ yiw,t+1

]
∧ ¬yiw,|w|

]
.

Intuitively, this constraint states that if Node i is labeled with
X and Node j is the left child of Node i, then ϕ′i holds on
w[t:] if and only if ϕ′j holds onw[t+1:] (i.e., if t < |w|). For
the other LTLf operators, we impose similar semantic con-
straints for which we refer the readers to Roy et al. (2022).

To ensure that ϕ′ holds on positive words, ΨP :=∧
w∈P y

n
w,0 and to ensure ϕ′ does not hold on negative

words, ΨN :=
∧
w∈N ¬ynw,0.

Next, to construct Ψ 6←ϕ, we symbolically encode a word
u that distinguishes formulas ϕ and ϕ′. We bound the length
of the symbolic word by a time horizon K = 22n+1

. The
choice of K is derived from Lemma 1 and the fact that the
size of the equivalent DFA for an LTLf formulas can be at
most doubly exponential (Giacomo and Vardi 2015).

Our encoding of a symbolic word u relies on variables
pt,a where t ∈ [K] and a ∈ Σ. If pt,a is set to true, then
u[t] = a. To ensure that the variables pt,a encode their de-
sired meaning, we generate a formula Ψword that consists of
the following constraint:∧

t∈[K]

[ ∨
a∈Σ∪{ε}

pt,a ∧
∧

a 6=a′∈Σ∪{ε}

[
¬pt,a ∨ ¬pt,a′

]]
.

This constraint ensures that, in the word u, each position
t ≤ K has a unique symbol from Σ ∪ {ε}.

Further, to track whether ϕ and ϕ′ hold on u, we have
variables zϕ,iu,t and zϕ

′,i
u,t where i ∈ [n], t ∈ [K]. These vari-

ables are similar to yiw,t, in the sense that zϕ,iu,t (resp. zϕ
′,i

u,t ) is
set to true, if ϕ (resp. ϕ′) holds at position t. To ensure de-
sired meaning of these variables, we impose semantic con-
straints Ψsem, similar to the semantic constraints imposed on
yiw,t. For instance, for a symbol a, we have the following
constraint:∧

i∈[n]

∧
a∈Σ

[
xi,a →

[ ∧
t∈[K]

zϕ
′,i

u,t ↔ pt,a
]]
.

Finally, we set Ψ 6←ϕ := Ψword ∧ Ψsem ∧ zϕ,nu,0 ∧ ¬zϕ
′,n

u,0 .
Intuitively, the above conjunction ensures that there exists a
word on which ϕ holds and ϕ′ does not.

4.2 The Counterexample-guided Algorithm
We now design a counterexample-guided algorithm to solve
Problem 2. In contrast to the symbolic (or semi-symbolic)
algorithm, this algorithm does not guide the search based on
propositional formulas built out of the hypothesis LTLf for-
mula. Instead, this algorithm relies entirely on two sets: a
set of negative words N and a set of discarded LTLf formu-
las D. Based on these two sets, we design a propositional
formula ΩN,D that has the properties that: (1) ΩN,D is sat-
isfiable if and only if there exists an LTLf formula ϕ that is
an n-description, does not hold on w ∈ N , and is not one of
the formulas in D; and (2) based on a model v of ΩN,D, one
can construct such an LTLf formula ϕ′.

Being a counterexample-guided algorithm, the construc-
tion of the sets N and D forms the crux of the algorithm.
In each iteration, these sets are updated based on the re-
lation between the hypothesis ϕ and the current guess ϕ′
(obtained from a model of ΩN,D). There are exactly three
relevant cases, which we discuss briefly.

• First, ϕ′ ↔ ϕ, i.e., ϕ′ and ϕ hold on the exact same set
of words. In this case, the algorithm discards ϕ′, due to
its equivalence to ϕ, by adding it to D.
• Second, ϕ′ → ϕ and ϕ 6→ ϕ′, i.e., ϕ′ holds on a proper

subset of the set of words on which ϕ hold. In this case,
our algorithm generates a word that satisfies ϕ and not
ϕ′, which it adds to N to eliminate ϕ.
• Third, ϕ′ 6← ϕ, i.e., ϕ′ does not hold on a subset of the

set of words on which ϕ hold. In this case, our algorithm
generates a word w that satisfies ϕ′ and not ϕ, which it
adds to N to eliminate ϕ′.

By handling the cases mentioned above, we obtain an algo-
rithm with guarantees (formalized in Theorem 2) exactly the
same as the semi-symbolic algorithm in Section 4.1.

5 Experiments
In this section, we evaluate the performance of the proposed
algorithms using three case studies. First, we evaluate the
performance of Algorithm 1, referred to as SYMDFA, and
compare it to a baseline counterexample-guided algorithm
by Avellaneda and Petrenko (2018), referred to as CEGDFA
in our first case study. Then, we evaluate the performance
of the proposed semi-symbolic algorithm (Section 4.1), re-
ferred to as S-SYMLTL, and the counterexample-guided al-
gorithm (Section 4.2), referred to as CEGLTL, for learning
LTLf formulas in our second and third case studies.

In S-SYMLTL, we fixed the time horizon K to a natural
number, instead of the double exponential theoretical upper
bound of 22n+1

. Using this heuristic means that S-SYMLTL
does not solve Problem 2, but we demonstrate that we pro-
duced good enough formulas in practice.

In addition, we implemented two existing heuristics from
Avellaneda and Petrenko (2018) to all the algorithms. First,
in every algorithm, we learned models in an incremental
manner, i.e., we started by learning DFAs (resp. LTLf formu-
las) of size 1 and then increased the size by 1. We repeated
the process until bound n. Second, we used a set of positive
words P ′ instead of P that starts as an empty set, and at each
iteration of the algorithm, if the inferred language does not
contain some words from P , we then extended P ′ with one
of such words, preferably the shortest one. This last heuris-
tic helped when dealing with large input samples because it
used as few words as possible from P .

We implemented every algorithm in Python 31, using
PySAT (Ignatiev, Morgado, and Marques-Silva 2018) for
learning DFA, and an ASP (Baral 2003) encoding that we
solve using clingo (Gebser et al. 2017) for learning LTLf
formulas. Overall, we ran all the experiments using 8 GiB
of RAM and two CPU cores with a clock speed of 3.6 GHz.

1https://github.com/cryhot/samp2symb/tree/paper/posdata
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Figure 2: Comparison of SYMDFA and CEGDFA in terms of the
runtime and the number of iterations of the main loop.

Learning DFAs For this case study, we considered a
set of 28 random DFAs of size 2 to 10 generated using
AALpy (Muškardin et al. 2022). Using each random DFA,
we generated a set of 1000 positive words of lengths 1 to
10. We ran algorithms CEGDFA and SYMDFA with a timeout
TO = 1000s, and for n up to 10.

Figure 2 shows a comparison between the performance of
SYMDFA and CEGDFA in terms of the inference time and the
required number of iterations of the main loop. On the left
plot, the average ratio of the number of iterations is 0.14,
which, in fact, shows that SYMDFA required noticeably less
number of iterations compared to CEGDFA. On the right plot,
the average ratio of the inference time is 1.09, which shows
that the inference of the two algorithms is comparable, and
yet SYMDFA is computationally less expensive since it re-
quires fewer iterations.

Learning Common LTLf Patterns In this case study,
we generated sample words using 12 common LTL pat-
terns (Dwyer, Avrunin, and Corbett 1999). For instance,
ψ1 := G a0, ψ2 := G(a1 → G(¬a0)) and ψ3 := G(¬a0)∨
F(a0∧(F(a1)). We refer to the full paper for a complete list
of LTLf patterns. Using each of these 12 ground truth LTLf
formulas, we generated a sample of 10000 positive words of
length 10. Then, we inferred LTLf formulas for each sam-
ple using CEGLTL and S-SYMLTL, separately. For both al-
gorithms, we set the maximum formula size n = 10 and a
timeout of TO = 1000s. For S-SYMLTL, we additionally set
the time horizon K = 8.

Figure 3a represents a comparison between the mentioned
algorithms in terms of inference time for the ground truth
LTLf formulas ψ1, ψ2, and ψ3. On average, S-SYMLTL
ran 173.9% faster than CEGLTL for all the 12 samples.
Our results showed that the LTLf formulas ϕ inferred by
S-SYMLTL were more or equally specific than the ground
truth LTLf formulas ψ (i.e., ϕ → ψ) for five out of the 12
samples, while the LTLf formulas ϕ′ inferred by CEGLTL
were equally or more specific than the ground truth LTLf
formulas ψ (i.e., ϕ′ → ψ) for three out of the 12 samples.

Learning LTL from Trajectories of Unmanned Aerial
Vehicle (UAV) In this case study, we implemented
S-SYMLTL and CEGLTL using sample words of a simulated
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Figure 3: Comparison of S-SYMLTL and CEGLTL in terms of
the runtime on the two LTLf case studies.

unmanned aerial vehicle (UAV) for learning LTLf formu-
las. Here, we used 10000 words clustered into three bundles
using the k-means clustering approach. Each word summa-
rizes selective binary features such as x0: “low battery”, x1:
“glide (not thrust)”, x2: “change yaw angle”, x3: “change
roll angle”, etc. We set n = 10, K = 8, and a timeout of
TO = 3600s. We inferred LTLf formulas for each cluster
using CEGLTL and S-SYMLTL.

Figure 3b depicts a comparison between CEGLTL and
S-SYMLTL in terms of the inference time for three clusters.
Our results showed that, on average, S-SYMLTL is 260.73%
faster than CEGLTL. Two examples of the inferred LTLf for-
mulas from the UAV words were (Fx1)→(Gx1) which
reads as “either the UAV always glides, or it never glides”
and G(x2→x3) which reads as “a change in yaw angle is
always accompanied by a change in roll angle”.

6 Conclusion
We presented novel algorithms for learning DFAs and LTLf
formulas from positive examples only. Our algorithms rely
on conciseness and language minimality as regularizers to
learn meaningful models. We demonstrated the efficacy of
our algorithms in three case studies.

A natural direction of future work is to lift our techniques
to tackle learning from positive examples for other finite
state machines (e.g., non-deterministic finite automata) and
more expressive temporal logics (e.g., linear dynamic logic
(LDL) (Giacomo and Vardi 2013)).
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